Properties of Trapezoids A **trapezoid** is a quadrilateral with exactly one pair of parallel sides. The parallel sides are called **bases**. The nonparallel sides are called **legs**. The **base angles** are formed by the base and one of the legs. In trapezoid ABCD, $\angle A$ and $\angle B$ are one pair of base angles and $\angle C$ and $\angle D$ are the other pair. If the legs of a trapezoid are congruent, then it is an **isosceles trapezoid**.

In an isosceles trapezoid, the opposite angles are supplementary.

base angles ∠A ≃∠B ∠D ≃∠C

AB 11DC

consecutive interior
angles are supplementary

mLA+mLD=180 MLB+mLC=180

V

mLA+mLC=180 mLB+mLD=180 by substitution. The midsegment of a trapezoid is the segment that connects the midpoints of the legs of the trapezoid.

The theorem below relates the midsegment and the bases of a trapezoid.

NOTE

A trapezoid midsegment is often referred to as "the median of a trapezoid."

TRAPEZOID EXAMPLES:

Properties of Kites A kite is a quadrilateral with exactly two pairs of consecutive congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.

Theorems Kites

6.25 If a quadrilateral is a kite, then its diagonals are perpendicular.

Example If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

6.26 If a quadrilateral is a kite, then exactly one pair of opposite angles is congruent.

Example If quadrilateral JKLM is a kite, $\overline{JK} \cong \overline{KL}$, and $\overline{JM} \cong \overline{LM}$, then $\angle J \cong \angle L$ and $\angle K \not\cong \angle M$.

KITE EXAMPLES:

$$180-70=110$$

$$\frac{110}{2}=55$$

$$360 - (36 + 70)$$
 $360 - 106$

$$\frac{254}{2} = (127)$$

